Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Expert Syst Appl ; 216: 119430, 2023 Apr 15.
Article in English | MEDLINE | ID: covidwho-2165287

ABSTRACT

The COVID-19 pandemic has been affecting the world since December 2019, and nowadays, the number of infected is increasing rapidly. Chest X-ray images are clinical adjuncts that can be used in the diagnosis of COVID-19 disease. Because of the rapid spread of COVID-19 disease worldwide and the limited number of expert radiologists, the proposed method uses the automatic diagnosis method rather than a manual diagnosis method. In the paper, COVID-19 Positive/Negative (2275 Positive, 4626 Negative) and Normal/Pneumonia (2313 Normal, 2313 Pneumonia) are diagnosed using chest X-ray images. Herein, 80 % and 20 % of the images are used in the training and validation set, respectively. In the proposed method, six different classifiers are trained using chest X-ray images, and the five most successful classifiers are used in both phases. In Phase-1 and Phase-2, image features are extracted using the Bag of Features method for Cosine K-Nearest Neighbor (KNN), Linear Discriminant, Logistic Regression, Bagged Trees Ensemble, Medium Gaussian Support Vector Machine (SVM), excluding SqueezeNet Deep Learning (K = 2000 and K = 1500 for Phase-1 and Phase-2, respectively). In both phases, the five most successful classifiers are determined, and images classify with the help of the Majority Voting (Mathematical Evaluation) method. The application of the proposed method is designed for users to diagnose COVID-19 Positive, Normal, and Pneumonia. The results show that accuracy values obtained by Majority Voting (Mathematical Evaluation) method for Phase-1 and Phase-2 are equal to 99.86 % and 99.28 %, respectively. Thus, it indicates that the accuracy of the whole system is 99.63 %. When we analyze the classification performance metrics for Phase-1 and Phase-2, Specificity (%), Precision (%), Recall (%), F1 Score (%), Area Under Curve (AUC), and Matthews Correlation Coefficient (MCC) are equal to 99.98-99.83-99.07-99.51-0.9974-0.9855 and 99.73-99.69-98.63-99.23-0.9928-0.9518, respectively. Moreover, if the classification performance metrics of the whole system are examined, it is seen that Specificity (%), Precision (%), Recall (%), F1 Score (%), AUC, and MCC are 99.88, 99.78, 98.90, 99.40, 0.9956, and 0.9720, respectively. When the studies in the literature are examined, the results show that the proposed model is better than its counterparts. Because the best performance metrics for the dataset used were obtained in this study. In addition, since the biphasic majority voting technique is used in the study, it is seen that the proposed model is more reliable. On the other hand, although there are tens of thousands of studies on this subject, the usability of these models is debatable since most of them do not have graphical user interface applications. Already, in artificial intelligence technologies, besides the performance of the developed models, their usability is also important. Because the developed models can generally be used by people who are less knowledgeable about artificial intelligence.

2.
15th International Conference on Open Source Systems and Technologies, ICOSST 2021 ; 2021.
Article in English | Scopus | ID: covidwho-1735810

ABSTRACT

Novel coronavirus (COVID-19) is a hazardous virus. Initially, detected in China and spread worldwide, causing several deaths. Over time, there have been several variants of COVID-19, we have grouped all of them into two major categories. The categories are known to be variants of concern and variants of interest. Talking about the first of these two, it is very dangerous, and we need a system that can not only detect the disease but also classify it without physical interaction with a patient suffering from COVID-19. This paper proposes a Bag-of-Features (BoF) based deep learning framework that can detect as well as classify COVID-19 and all of its variants as well. Initially, the spatial features are extracted with deep convolutional models, while hand-crafted features have been extracted from several hand-crafted descriptors. Both spatial and hand-crafted features are combined to make a feature vector. This feature vector feeds the classifier to classify different variants in respective categories. The experimental results show that the proposed methodology outperforms all the existing methods. © 2021 IEEE.

3.
Biomed Signal Process Control ; 68: 102656, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1193247

ABSTRACT

The medical and scientific communities are currently trying to treat infected patients and develop vaccines for preventing a future outbreak. In healthcare, machine learning is proven to be an efficient technology for helping to combat the COVID-19. Hospitals are now overwhelmed with the increased infections of COVID-19 cases and given patients' confidentiality and rights. It becomes hard to assemble quality medical image datasets in a timely manner. For COVID-19 diagnosis, several traditional computer-aided detection systems based on classification techniques were proposed. The bag-of-features (BoF) model has shown a promising potential in this domain. Thus, this work developed an ensemble-based BoF classification system for the COVID-19 detection. In this model, we proposed ensemble at the classification step of the BoF. The proposed system was evaluated and compared to different classification systems for different number of visual words to evaluate their effect on the classification efficiency. The results proved the superiority of the proposed ensemble-based BoF for the classification of normal and COVID19 chest X-ray (CXR) images compared to other classifiers.

SELECTION OF CITATIONS
SEARCH DETAIL